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PREFACE
Geometry can mean different things to different people. It may evoke

thoughts of design, drafting, architecture, art, measurement, mensura-
tion, mechanics, engineering, surveying, geodesy, navigation, astronomy,
and other equally significant activities. Or it may evoke thoughts of
formal logic, deductive reasoning, propositions, definitions, post ulationai
systems, symbolic logic, and, in general, questions of mathematical phi-
losophy and metamathematics.

In historical perspective, geometry was the first branch of mathe-
matics to be cultivated systematically. From Tha les to Apollonius, the
Greeks erected an intellectual edifice that has withstood the impact of
nearly 2000 years. This heritage from the ancients had been preceded
by crude, empirical, working rules for measuring and carrying on such
everyday activities as building and surveying. Indeed, the very word
.6geometry" means earth-meakure. These two aspects of geometry sug-
gest two antithetical approaches to the subject: the first, a purely logical,
abstract point of view, where points and lines are thought of as "ideal-

constructs:' and where the major emphasis is put upon hypothetico-
deductive reasoning; thc second, a frankly "practicar utilitarian point
of view, where lines and angles arc measured not for their own sake, but
applied to physical objects as a means to some further end.

The past hundred years, however, have witnessed a remarkably
changed outlook. lb begin with, Euclidean geometry was "unshackled"
by the creative imagination of Gauss, Rolyai, Lobachevski, and Riemann.
Then, on the threshold of the twentieth century, geometry was identified
with logic through the contributions oi Peano, Hilbert, Veblen, Russell,
Whitehead and others. Geometry was now regarded as a purely abstract,
formal postuiation 4ystem, employing "meaningless marks on paper"
and virtually devoid of content; but it had a definite structure, and this
was all-important. Subsequently, mathematicians have come to think of
geometry, or more precisely, many geometries, not as systems of mathe-
mites per .ce, but rather as a particular way of looking at mathematica'
ideas. In this sense geometry was found to be subtly and intimately asso-
ciated with arithmetic, algebra. analysis, thc thcory of numbers, group
theory, topology indeed nearly every arca of mathematics.

This collection of essays depicts the fascinating role played by man's
intuition in thc history of geometry. The human nervous system dictates
certain conceptual images resulting from sensory experience and leading
to certain notions such as At might, curved, flat, round, parallel, contin-
uous, finite, infinite, endlecs, boundan, and thc like, Contemporary
mathematicians use these terms in a far more sophisticated way than
suggested hy ordinary usage.

William L. Schaaf
ill
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FOREWORD
As commonly used, the words "intuitive" and "intuition" have sev-

eral meanings which, to some extent, overlap. We sometimes refer to a
blind, uneducated guess as an intuitive inference, as, for example, that
the earth is the center of the solar system, or that phlogiston is the com-
bustible substance which is dispelled from an object upon heating it.
Again, we sometimes speak of a shrewd intelligent guess as an intuitive
conjecture: for example, that x" y" L z" for n > 2, where x, y and z are
any integers other than zero; or, that every even integer greater than 2
can be represented as the sum of two positive primes.

The commonest use of the word intuitive, however, is that suggested
by such phrases as "common sense tells us that . . . :' or "you just feel it
in your bones that . . :'; the implication being that our sensory percep-
tion makes a very strong appeal to the intellect. For example, we readily
assent to the equality of the measure of the opposite angles formed by
two intersecting straight lines; we assert without hesitation that a straight
line joining two given points is shorter thai a polygonal path between
them.

This latter use of the word intuitive is part.cularly pertinent to geom-
etry. Many writers have pointed out that our concepts of geometric
figures are derived basically from our sensory perception of objects in
the external world. By manipulating. experimenting and observing
physical entities, we arrive at certain generalizations concerning magni-
tude, form, position, and spatial relations.

This intuitive basis for our geometric concept is, however, only the
beginning of a process of refinement which leads to thought about ab-
stract entities and logical relations, i.e., to pure geometry. And, indeed,
primitive generalizations based upon intuitive sense perception may
exert a restrictive influence upon the creation of abstract mathematical
ideas. as in the case of non-Euclidean geometry.

This first essay sketches the historical development leading to the
mathematician's complete emancipation from the bonds of sensory expe-
rience in the realm of geometry.

1
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Helmholtz and the nature of geometrical
axioms: a segment in the history

of mathematics
Morton R. Kenner

It was a hard struggle for mar kind
to free himself from the notion that geometry

had anything to do with the real world.

"In short, mathematks is what we make it, . . . and having been made,
it may at some future time even fail to be 'mathematics' any longer:"
This simple, yet profound, observation by Professor Wilder justifies, if
justification is indeed necessary, that important activity called the history
of mathematics. And it also provides a clue to the use that we as teachers
of mathematics can make of the history of mathematics, for the history of
mathematics tells us what mathematicians made it in a given historical
period Pnd explains the influence of the presuppositions of that period.

The investigations of Hermann von Helmholtz (1821-1894) into the
nature of geometrical axioms is a striking example of how the presup-
position.s of a historical period enter into the considerations of mathe-
matical problems. Helmholtz typifies the radical empiricist of the nine-
teenth century, and his researches into the nature of geometric axioms
furnish us with a picture of the empiricist's explication of geometrical
axioms. As G. Stanley Hall, who was both a student and collaborator of
Helmholtz before joining the faculty of Columbia University, has re-
marked, "The most radical side of Helmholtz's empiricism is to be found
in his abstruse and largely mathematical discussions respecting the na-
ture of the Euclidean axioms:'2 The following exposition will follow
closely Helmholtz's lecture, "On the Origin and Significance of Geo-
metrical Axioms73

Helmholtz begins by asking what the origin of those propositions,
which are unquestionably true yet incapable of proof, is in a science
where everything else is a reasoned conclusion. He wonders if they were
inherited from some divine source as the idealistic philosophers think.
But yet another answer might be that the ingenuity of mathematicians
has hitherto been unable to find proofs or at least explanations of these

I Raymond L. Wilder, Introduction to the Foundations of Mathematics (New York: John Wiky
and Sow, 1952). p. 284.

2 C. Stanley Wall. Founders of Modern Psychology (New York: D. Appleton and Co., 1912), p. 256.
Hermann von Helmholtz, Popular Lectures on Seientifu- Subjects (London: Longmans, Green

and Co., 1893). II. 27-73.

3



FIG. 1 FIG. 2

propositions. As Helmholtz rightly asserts, "The main difficulty in these
mquiries [the nature and origin of geometrical axioms] is, and always
has been, the readiness with which results of everyday experience be-
come mixed up as apparent necessities of thought with the logical proc-
esses, so long as Euclid's method of constructive intuition is exclusively
followed in geometry:" The foundation of much proof in Euclid, as has
been established by modern research, lies in the eighth axiom of Book I
of The Elements of Euclid which states: "Magnitudes which coincide
with another, that is which exactly fill the same space, are equal to one
another:" The axiom, of course, expresses the intuitive notion of con-
gruence. But as Helmholtz rightly maintains, if we build our necessities
of thought upon this assumption, we must also assume the possibility of
free translation of fixed figures with unchanged form to any part of space.
And it is this latter assumption which we must examine since clearly no
proof for it is given in Euclid. But let us make this latter point clear in
some detail.

Imagine that we are beings of a two-dimensional space, that is, that
wt. - 2 and move on the surface of some solid body. Assume also that as
rational brings we intend to develop a geometry for our two dimensional
universe. As in Euclidean space, a point will describe a line and a line a
surface; but if our universe were only two dimensional we would be
incapable of imagining a surface moving out of itself just as we, in our
three-dimensional space, are incapable of imagining a solid moving out
of itself. But let us get back to our two-dimensional space. Given two
points in that space, we could draw a shortest line between them; how-
ever, we must be careful to recognize that the shortest lines in our space

'Thid.. p 59.
Todbunter (ed.), The Elernentt of Euclid (London: J. M. Dent and Sow Ltd.. 1933). p. 6.
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are not neces-arily straight lines in the usual sense. The technical term
for such lines is geodetic lines.

A geodetic line is characterized by the property that of all the paths
on a given surface connecting any two points of the line, thc shortest is
the geodetic line itself. Clearly the straight line in ordinary Euclidean
geometry is a geodetic line. We might visualize geodetics as essentially
lines described by a tense (or taut) thread laid upon a surface so that it
can slide freely upon that surface. Currently the term geodesic rather
than geodetic is used for such lines as those described above, but in this
discussion we shall use the term geodetic which follows exactly the usage
of Helmholtz.*

lb pinpoint this discussion further, let us suppose that we lived on
the surface of the sphere illustrated in Figure 1. We ask what are our
geodetics on this surface. As any navigator knows, they are the arcs of
great circles. For example. thc shortest distance from A tc:B is illustrated
in Figure 1. It would be that arc from A to B lying along the great circle
going through A and B. On the other hand, if we imagine a third point
C, which is distinct from A and B, lying on the great circle through A
and B and if we ask what is the shortest route from A to B (see Figure 1
for location of C), we see first of all that the shortest route no longer
coincides with the geodetic since there are two geodetics, one going

.through C and the other not going through C. However, if A and B
were to lie on the ends of a diameter, as in Figure 2. then there would
be two geodctics and two shortest routes and they would not coincide.
So we see that, at least on the surface of the sphere, it is not necessarily
true that through every two points there is one a.id only one "shortest
route:'

Now suppose that we were dwellers on the surface of the sphere. We

FIG. 3

Op, fit., p. 15.
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FIG. 5

would then knnw nothing of parallel lines (whereby parallel lines are
meant nonintersecting geodetics), for clearly, as Figure 3 illustrates, any
two distinct geodetics when continued will intersect in at least two points.
Furthermore, we would have no notion of similarity, for as Figure 4
illustrates, the sum of the angles of aA'B'C' is less than the sum of the
angles of AABC. We would, however, have a notion of congruence, i.e.,
again in Figure 4,

Thus we see that if we lived on the surface oi a sphere, we would
clearly set up a different system of geometric axioms from that which we
are accustomed to, even though our logical powers might be exactly the
same.

Now let us proceed to imagine ourselves as inhabitants of a different
type of surface, say an ellipsoid, as in Figure 5. Here we could construct
geodetics between any three points, but notice that triangles of equal
geodeties. such as aRBC and no longer necessarily have equal
angles. Clearly, there are distinct triangles of equal geodetic lengths
which are congruent, but there are many which are not, depending on
how near the pointed end or near the blunt end of our surface we have
our triangles. Thus, on such a surface we could not move figures in any
way we please, i.e., preserving geodetic distances, without changing their
form. Some motions would preserve form, others would not. We might
also add that circles of equal radii (length measured along geodetics)
would not necessarily be the same, as is illustrated in Figure 5 by the
circles traced out on the surface of the ellipsoid by the two compasses.
The circumference would be greater at the blunter than at the sharper
end.

Thus we see that if a surface admits of the figures lying on it being
freely moved without change, the property is a special one which does
not belong to every kind of surface. The condition under which a sur-

6
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face possesses this important property was first pointed out by Gauss.
The measure of curvature, as Gauss called it, i.e., the reciprocal of the
product of greatest and least curvature, must be everywhere equal over
the whole extent of the surface.7 Gauss also showed that this measure
of curvature is not changed as the surface is bent without distention or
contraction of any part of it. (By distention, Gauss meant stretching or
distorting or tearing.) For example, a sheet could be wrapped into a
cylinder and the properties dependent upon curvature would remain
invariant, or stated otherwise, the geometry insofar as it depended on
curvature would be the same on a cylindrical surface as it would be on
a plane. Of course, there are certain niceties which must bc taken care
of in terms of the finiteness of the cylindrical surface but we shall pass
by these difficulties at this time.

FIG. 6

We must next introduce a third type of surface, the surfaces which
Helmholtz called "pseudospheres:' These essentially can bc any of the
three illustrated iv. Figure 6. The important property of these pseudo-
spheres, i.e., the surfaces of these pseudosphcres, is that again the meas-
ure of curvature is constant, only it is negative instead of positive, so
that the property of congruence holds on them. That is, all figures con-
structed at one place can be transferred to any othcr with perfect con-
tinuity of form and perfect equality of all dimensions lying on the surface
itself. However, on these pseudospheres the parallel axiom no loiwer
is valid. The difficulty here, however, is unlike that on the surface of the
sphere, where no parallels existed. Here, given a geodetic and a point
not on it, we can construct an infinite number of distinct parallels
through the point to the given line, i.e., geodeties which will not nwet
the given geodetic regardless of how far theyare extended. We, of course,
now only call two of these nonintersecting geodetics parallels, but here

The notion of t invonlile is CSieilliAlS .11141Sik ttile which inSOISC% dist its,sion of the Gaussian
spherical reprewntation of surface. The least and greatest tumitures are then related to the
tangents and normals of the mapping. It is outside the hmitations set fin this Impel to discuss this
concept carefully, A discumion of it, however, can br found in Hillwrt and Cohn-Vocsen. Geometry
and the Irnagmatioo (Ness York: Chelsea Publishing (o.. 1952), pp. 195-97.
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the important fact is the existence of more than one geodetic not inter-
secting the given geodetic.

Let us pause to sum up what we have discovered. On the surface of an
ellipsoid or on a sphere, the parallel axiom does not hold since any two
geodetics intersect; in an ordinary Euclidean plane there is exactly one
line parallel to a given line through a given point: while on a pseudo-
sphere given a line and a point not on the line there are infinitely many
lines through the point that do not intersect the given line.

On the ellipsoid, the notion of congruence does not old; on the sphere
and on the pseudosphere the notion of congruence does hold; and in the
Euclidean plane the notion of congruence holds.

On the ellipsoid, the notion of similarity does not hold. On the sphere
and pseudosphere the notion of similarity does not hold. (In fact, both
on the sphere and the pseudosphere the following theorem is true: Two
triangles with three angles of one equal respectively to the three angles
of the other are congruent. Hence there are no similar noncongruent
triangles.) On the Euclidean plane the notion of similarity holds.

We might tabulate these results as follows:

Surface Paralleli.sm Congruence Similarity

Fuclidean Plane Yes (One through
point to a line)

Yes Yes

Surface of s. phere No Yes No
Surface of ellipsoid No . No No
Surface of pseudosphere Yes (Infinitely many) Yes No

It is easy analytically to extend these four surfaces to three-dimensional
spaces in which the properties which we have been discussing still do
or do not hold, as the case may be, in their two-dimensional analogues;
but, as Helmholtz himself admits, "When we pass to space of three di-
mensions, we are stopped in our power of presentation [visualization]
by the structure of our organs and the experiences got through them
which correspond only to the space in which we live:"

It is possible to represent the three-dimensional analogues of the above-
discussed surfaces by means of the so-called Poincaré projective models,
but the theoryQf projective models would take us far afield at the mo-
ment and certainly these models were unknown to Hehnholtz. However,
if the reader is interested, a thorough discussion of them can be found in
the Hilbert Cohn-Vossen book, Geometry and the Imagination.°

iop. cit., p. 44.
op. rit., pp. 242,61.
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Helmholtz maintained, nevertheless, that it was possible to imagine
conditions for which the properties or measurements of Euclidean space
would become what they would be either in a spherical or pseudospher-
ical space without the use of the above-referred-to-Poincare models. To
understand his method, let us first remind ourselves that if the dimen-
sions of other objects in our own world were diminished or increased in
like proportion at the same time, we. with our means of space percep-
tion, would be utterly unaware of the change. This would also be the
case if the distortion were different in different directions. The only
proviso is that our own body be changed in the same manner sitnulta-
neously and that an object in rotating assumed at each instant the amount
of distortion in its different dimensions corresponding to its position at
that time.

For example, let us imagine the image of the world in a convex mirror.
A well-made convex mirror represents objects to all as apparently solid
objects and at fixed positions behind its surface. But, as we know, the
images of the distant horizon and the sun in the sky lie behind the mirror
at a finite distance which, in fact, is equal to the focal length of the mir-
ror. Between the images of the distant horizon, say, and the surface of
the mirror would be found the images of all other objects before it. But,
of course, those images would be diminished and flattened in proportion
to their respective distances from the mirror. The image of a man meas-
uring with a ruler a straight line from the mirror would contract more
and more the farther he went, but with his shrunken rule, the man in
the image would count out exactly the same number of inches as the real
man, and, in general. all geometric measurements whatsoever of lines
and angles taken with regular varying images of real instruments would
yield exactly the same results as in the outer world. Also, all congruent
bodies would coincide on being applied to one another in the mirror
as in the outer world. And all lines of sight in the outer world would be
represented by straight lines of sight in the mirror.

But what does this prove? It shows that we cannot tell how the man
in the mirror can discover that his body is not a rigid solid. It also shows
that his experience (to him) is completely interpretable in terms of
Euclid's axioms. Further, if he could look out upon our world as we
can look into his, he would declare our world to be a picture in a spher-
ical mirror and would speak of us just as we speak of him. And if he
could communicate with us. Helmholtz concludes that neither he nor
we could convince the other that he had the true and the other the
distorted world picture.

Now if instead of a convex mirror we used a surface of a sphere. and
if we imagined that in the sphere moving bodies contracted as they de-
parted from the center as the images do in a convex mirror, we would

9



have the "mirror analogue" of a pseudospherical space. And in a manner
similar to that above, Helmholtz proceeds to analyze how objects in such
a pseudospherical world, were it possible to enter one, would appear to
an observer whose eye measure and experiences of space had been gained,
like ours, in Euclidean space. In fact, he even shows the type of lens that
we might use to have this visual experience. He says:

"Now we can obtain exactly similar images of our real world, if we
look through a large convex lens of corresponding negative focal length,
or even through a pair of convex spectacles if ground somewhat pris-
matically to resemble pieces of one continuous larger lens. With these,
like the convex mirror, we see remote objects as if near to us, the most
remote appearing no farther distant than the focus of the lens. In go-
ing about with this lens before the eyes, we find that the objects we
approach dilate exactly in the manner I have described for pseudospher-
ical space"

Helmholtz finally concludes that he has shown how we can infer from
the known laws of our own perceptions the sensations which a spherical
or pseudospherical world would give if it existed. What necessarily fol-
lows is, of course, that we cannot hold that the axioms of geometry in
any way depend upon a priori intuition. Helmholtz sums up his own
argument as follows:

1. The axioms of geometry, taken by themselves out of all connection
with mechanical propositions, represent no relations to real things.
When thus isolated, if we regard them with Kant as forms of intuition
transcendentally given, they constitute a form into which any empirical
context whatever will fit, and which therefore does not in any way limit
or determine beforehand the nature of the content. This is true, how-
ever. not only of Euclid's axioms, but also of the axioms of spherical and
pseudospherical geometry.

2. As soon as certain principles of mechanics are conjoined with the
axioms of geometry, we obtain a system of propositions which has real
import, and which can be verified or overturned by empirical observa-
tions. just as it can be inferred from experience. If such a system were
to be taken as a transcendental form of intuition and thought, there
must be assumed a pre-established harmony between form and reality."

The empirical foundation of our geometric axioms is thus established
by answering positively the question: Can non-Euclidean geometry be-
come an object of intuition? For Helmholtz if the foundations of geo-
metrical axioms were not empirical, we should be unable to make non-

. Op. p. 61,
lind., p. 68.
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Euclidean geometry the object of intuition. By (I) above, this intuition
is limited to no particular geometric system, and by (2) this intuition,
as well as its origins, assumes real import subject to empirical observation
only when conjoined with certain principles of mechanics. Were this
latter not the case, we would then have to assume that our intuition of
space carried along with it an a priori knowledge of empirical data, i.e.,
objects and their spatial relations.

in conclusion, we might pc int out that the development of geometry
has been a steady march toward abstractness formalism in the modern
terminology. This development has progressively forced empirical sub-
ject matter into the background, and in our own times has attempted
to eliminate it from geometry altogether. To regard geometry, however,
as a purely deductive science is to forsake entirely the view that geom-
etry considered as a branch of mathematicsdepends in any way upon
spatial intuition. And if we consider the current abstract point of view
in geometry a commonplace notion, we should remind ourselvesas a
partial critique of our own preconceptions that the slow elimination
of such empirical dependence in geometrical considerations was neither
easy nor always correct, and the imaginative and resourceful work of
Helmholtz shows us that it was no David who finally slew the empiricists.
Unless, of course, David's last name was Hilbert.

11



FOREWORD

Strangely enough, fundamental or universal ideas are often the most
difficult to define precisely. Have you ever tried to formulate a careful,
logical definition of "straight line"? If you have, you will appreciate the
difficulties.

Even dependence upon physical reality helps but little. As a noted
scientist inadvertently once said:

"No power on earth, however great,
Can pull a string, however fine,
Into a horizontal line
That shall be absolutely straight:'

Or, as another thoughtful observer has put it:

"A straight line has no width, no depth, no wiggles, and no ends.
There are no straight lines. We have ideas about these non-
existent impossibilities: we even draw pictures of them. But they
do not exist .

In this essay the author explores some of the weaknesses of Euclid's
basic definitions and axioms; the inherent difficulty, indeed, the impos-
sibility, of defining rigorously all terms used in a given discipline; and
the subtle implications of the concept of "straightness" for contemporary
pure and applied mathematics.

13



The Straight Line
Euclid's definition of it is worthless, but his axioms remain basically
sound. His successors in mathematics have extended his ideas to the

curved line and a clearer concept of length

Morris Kline

We often mistake familiarity for understanding. but of course they
are not the same thing. For example, every wife is familiar with her hus-
band but certainly does not understand him, as every husband will cer-
tify. Among the subjects we suppose we understand, nothing would seem
less complicated than the straight line. It is so familiar and so obvious
that it hardly seems worth talking about. And yet the fact is that mathe-
maticians have found the straight line a most complex and subtle study,
and it has taken hundreds of years of analysis by many brilliant minds to
arrive at a full understanding of it as a logical concept.

The straight line is easy enough to picture in physical terms e.g., a
string stretched taut between two points, the edge of a ruler, and sb on.
But these devices do not answer the question: What is the mathematical
straight line? The mathematical line has no thickness, no color, no mo-
lecular structure. It is an abstraction an idealization of the ruler's
edge and the stretched string. What properties does the mathematical
straight line possess?

Euclid attempted to define it in this manner: "A straight line is a
curve which lies evenly with the points on itself:' He defined a curve
(line) as length without thickness, and a point as something having no
"parts:' But he failed to define either length or part, so that his definition
rests upon physical conceptions and is therefore not acceptable as a
mathematical definition, for mathematical logic must be independent of
physical meanings. Furthermore, the phrase "lies evenly with the points
on itself" is completely mysterious. We must conclude that Euclid's
definition is worthless.

If this is so, how was Euclid able to proceed with the construction of
a logical system of geometry? The answer is that, as mathematicians now
realize, any logical system must start with undefined concepts, and it is
the axioms of the system. and only these, that specify the properties of
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all the concepts used in the proofs. Without being at all aware of this,
Euclid did the right thing: hc ignored his worthless definitions of point,
curve and straight line, so that in effect these concepts were undefined,
and he proceeded to state the 10 axioms of his geometry.

H is axioms state, among other things, that a straight line is determined
by two points, that it may have i.:definite length, that any two right
angles are equal, that only one line parallel to a given line can pass
through a point outside that line in the same plane. that when equals
(e.g.. equal line segments) are added to equals the sums are always equal,
and that the whole is greater than any of its parts. From these axioms
Euclid deduced hundreds of theorems which tell us much more about
the mathematical straight line.

As we examine these axioms and theorems, we nod our heads in agree-
ment and in approval. Euclid does seem to have described the essence
of the straight line. The straightness of the ruler's edge and the stretched
string are apparently bound fast in his system of geometry; in particular,
thc shortest distance between any two points in the space described by
his geometry is a straight line. (Incidentally, this fact is not axiomatic,
as commonly supposed. but is a deep mathematical theorem.)

Rut now, as we explore further, we meet a disturbing fact. Consider
a curved surface such as the one shown on the next page [Figure 11. The
shortest path between two points on this surface is not a straight line in
the usual intuitive sense. And yet thc surprising fact is that such paths
and figures formed by them on this surface obey all the axioms of Eu-
clidean geometry! For example. the axiom of parallel lines applies here:
given a curve which represents the shortest distance betwen two points
on thc surface (this curve is called a geodesic). we can draw only one
geodesic through a point not on this curve which will never meet the
first geodesic however far the two curves arc extended.

The point of this model is that Euclid and all the mathematicians who
accepted Euclidean geometry until recent times believed erroneously
that the Euclidean axioms and theorems applied only to the straight lines
formed by rulers' edges and stretched strings. But now we find that the
axioms and theorems also apply perfectly to figures on a curved surface.
The situation is analogous to that of a client who asks an architect to
design a house according to certain instructions and then finds when the
house is built that it does not look at all like what he had envisioned,
although the architect obeyed his instructions as far as they went. The
trouble is that his instructions were not sufficiently restrictive. So it is
with Euclid's axioms. They give so much leeway that tlwy describe
curved lines as well as straight ones.

In the early years of the 19th century mathematicians. though not yet
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concerned with the flaws we have just examined, attacked the Euclidean
axioms on other grounds. They were troubled by Euclid's assumption
that a pair of lines might never meet however far they were extended in
space. They believed that they should not postulate so boldly what hap-
pens in regions inaccessible to experience. Hence they sought to replace

FIG. 1

this axiom by an axiom intuitively more acceptable or more readily
verifiable. But every proposed substitute for the parallel axiom was found
on analysis to involve assumptions about space as objectionable as the
Euclidean parallel axiom. Whereupon some mathematicians adopted
an entirely new course.

'Ile first of these innovators, the Jesuit priest Girolamo Sacchcri, had
set out to prove that Euclid's axiom was the only possible correct one to
showing that any other parallel aximn contradicting his would lead to
a contradiction in the resulting system of geometry. First he was able to
show that such contradictions would arise if one proposed the axiom
that there is no parallel to a given line through a point not on this line.
Then he examined the proposition that more than one parallel to the
line might pass through such a point. In this case he arrived at no out-
right logical contradictions, but the theorems he derived were so strange
that he concluded this system of geometry made no sense.

Saccheri, it turned out, had given in too easily. The system based on
his second axiom was soon shown to be less absurd than it seemed. The
great mathematicians Karl Friedrich Gauss, Nikolai Lobachevski and
jános Bolyai. working independently, created a non-Euclidean geom-
etry, which is named for Lobachevski because he was the first to publish
the results. This geometry was built, in effect, upon Saccheri's more-
than-one-parallel axiom and the other nine Euclidean axioms.

In considering the Lobachevskian geometry the reader must remcm-
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ber that we are dealing with mathematical abstractions, not with physi.
cal objects. Some of the theorems and conclusions may seem at first sight
to defy common sense, or the evidence of our senses. However, all we
can ask of a logical system is that it be rigorously logical and consistent

FIG. 2

within itself. As a matter of fact, it is found upon analysis that the new
non-Euclidean geometries ag: -e with physical observations as well as
Euclidean geometry does.

In this vein let us compare the Lobachevskian and Euclidean straight
lines. We start with a line tangent to a hyperbola at the vertex [Figure 4.
In Lobachevskis' geometry, as a consequence of his axioms, the length of
the segment AB of this line has a value which corresponds numerically
to the area NOB' in the Euclidean system. (The proof of this equality
need not concern us here.) Similarly the line segment AC is equal to the
area CON. Now let us suppose that the area COD' equals the area
WON. This being so, in Imbachevskian geometry the line segment
AD must be equal to the segment DC, although in Euclidean geometry
their lengths are obviously different. There are still more remarkable
consequences. As we move point A closer to M, the area CON increases
rapidly, and so does the numerical value of the line CA. If the line OM
is tangent to the hyperbola at infinity (what is called an asymptote), then
the area becomes infinite when A reaches M, and the length of the line
CM likewise is infinite, according to the Lobachevskian geometry. Thus
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the entire straight line of Lobachevski's geometry, though infinite in
length as far as his system is concerned, is represented within the finite
Euclidean line MN.

What this comparison of the Euclidean and Lobachevskian lines
teaches us is that the Euclidean mathematicians were parochial in their
understanding of equality, or "congruence:' The Euclulean axioms con-
cerning the 9uality or inequality of line segments were framed with the
concept of rigid bodies in mind. Euclid intended that equal segments be
those which yielded the same lengths when measured by a rigid ruler,
and mathematicians followed his lead. But the Lobachevskian line shows
that line segments may be equal in spite of the fact that a rigid ruler
indicates them to be unequal.

This fact su:r:ests that even the Euclidean concept of equality may
have entirely new physical interpretations. Suppose that as we moved
out toward the ends of the universe our measuring rod contracted more
and more, and all physical objects and distances shrank in the same pro-
portion. We would be unaware of the contraction, and would believe
that we were living in an infinitely extended world, although actually it
might be finite, as measured by a truly rigid ruler. In other words, just
as soon as we recognize that the Euclidean equality axioms can be satis-
fied with a new physical meaning for equality, we must recognize also
that the physical world which appears to be Euclidean may actually
possess quite a different structure.

Bernhard Riemann conceived another non-Euclidean geometry which

FIG. 3
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took the opposite tack from Lobachevski's. He started with Saccheri's
first proposition that there are no parallel lines to a given line and
with the remaining nine axioms of Euclid, modified in minor respects.
In Riemann's geometry the straight line pro% es to he finite in length and
to have the structure of a circle.

We can illustrate the difkrence between the Riemannian line and the
Euclidean line with another diagram [Figure 3]. Here a Euclidean line
is tangent to a circle, and we wnsider the segment AB. In Riemann's
geometry the length of AB turns out to be equal numerically to the
Euclidean area AIM' wu.hin the circle (the shaded area in the figure).
As a consequence of this fact. if the area COD' equals the area D'OA',
for example, the line segment CD is equal to DA, although by Euclidean
standards the latter is much hmger than the former. Now however far
we may move A to the left and B to the right, the length of AB cannot
exceed the area of the semicircle below A"B"; that is, the Riemannian
line has finite length. The interpretation also suggests how an infinite
world co,ild be represented bv a geometry with finite lines. Whereas
with a contracting measuring rod a finite world might appear infinite,
with an expanding measuring rod an infinite world would appear finite.

'The farther we pursue the theorems of the non-Euclidean geometries,
the more their straight lines affront our intuition and incite us to rebel.
And yet. if we object to thc finiteness of thc Riemannian line and its cir-
cular struct me on the ground that our view of the universe calls for lines
extending indefinitely far out into space, a mathematician can reply
that this notion is merely the product of an unbridled and untutored
imagination. Vithin the actually observable world of our experience

Fin. 4

the non-Euclidean geometries furnish an accurate description of physical
real it ies.

The "straight line" in all geometries has the same basic definition:
the shortest distance between two points. This is true whether we con-
sider a stretched string. an arc On the surface of a sphere or even a more
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complex path. IAA us rake the case of a round hill standing on a flat plain
[Figure 41 The shortest path between two points around the brow of
the hill (A,B) may be the arc.of a circle; the shortest path from A to C
at the base of the hill may be a rather flattened S curve; from C to D on
the plain we have an ordinary straight line. If one were to construct a
geometry to fit this surface. the "straight" line of this geometry would
have to have the properties conmmn to AB, AC and CD that is, the
properties of the various geodesics on this surface. Obviously construc-
tion of such a geometry would not be simple.

In the geometry of the theory of relativity the paths of light rays in
space-time are the geodesics, and these play the role of the straight line.
The geodesics are generally not straight. In fact, this geometry possesses
30111c of the peculiarities of a flat region containing hills. Each mass in
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space-time e.g., the sun) acts like a hill causing the geodesics to depart
from straightness.

Suppose now we turn front] the vast realni of spaec to minute seginents
of the straight line. What does tnat hemat ics have to say about the internal
structure of a segment?

Intuition and Euclidean geometry agree that we may divide this seg-
ment into any given number ot equal parts. If we label the midpoint
1./,. then marked the quarters. divided the segment again into eighths
,

[Figure 51 and continued unendingly to halve the successively smaller
segments. it would appear that eventually we could label every point on
thc line. A moment's thought makes clear, however, that this is impos-
sible. For one thing, there is an infinite number of fractiimal lengths not
included in the foregoing set (e.g., I / 3, I /5). For another, we must also
cmsider fracthmal lengths corresponding to the irrat ional numbers (half
the square root of 2, one-third the square root of 2, and so on) which are
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also it/finite in number and terminate at other points on the line. As a
matter of fact, the unit segment contains more irrational points than
rational points. The entire collection of points on the segment is called
the continuum the "grand continuum- in the words of the mathema-
tician J. J. Sylvester.

Now consider a line twice as long as the preceding unit. One would
expect it to contain twice as many points. But paradoxically it has exactly

FIG. 7

P4

the same number of points. This is easily proved by forming a triangle
with tlw hmger line as the base and the shorter one as the midline {Fig-
ure 6]. Now if we draw lines from the apex of the triangle through the
midline to the baseline, we can see that for every point crossed in the
former, there will be a unique corresponding point in the latter. Thus
there is a one-to-one correspondence between the points on CD and on
AB. But one-to-one correspondence is precisely the basis for asserting the
equality of the number of objects in two sets of objects. If an army of
soldiers each carrying a gun were to pass in review before us. we would
know at oncc that there arc as many guns as soldiers.

If all line segments contain the same number of points, how can they
differ in length? This question was raised in a more general form more
than 2,000 years ago by the Greek philosopher Zeno. Magnitude. said
Zeno. must be divisible. Points, being indivisible, can possess no magni-
tude. A line segment. then. being made of points which have no mag-
nitude, cannot itself have magnitude, any more than a noise can be a
composite of silences. In other words, how can length arise from a con-
glomeration of iloints which have no length?

Modern mathematics has taken up and answered this question by in-
troducing the "theory of measure:' by which, through assigning lengths
to rather arbitrary sets of points on a line, the paradox is resolved. We
need not go into the process here; it is sufficient to say that the method
has enabled us to penetrate somewhat into the murky darkness of the
interior of the straight line.

The straight line is the starting point for ant her deep investigation
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which has come to fruition within the last quarter century. The subject
in question was clearly in Euclid's mind when he defined a curve (line)
as breadthless length and then stated that its extremities are points. He
was saying in effect-that the line is one-dimensional and the point 'Zero-
dimensional. The line is not a band or strip. But breadthless length, we
saw, is a physical definition and hence not acceptable to matlwmatics.
just what do we mean by the intuitive or physical statement that a line
is one-dimensional?

The full answer is a long story, but the essential idea is as follows. Let
us ask the more general question: What shall we mean by the dimension
of any set of points in a Euclidean plane? To begin with, suppose that
we have a set of points whose dimension is to be determined. We sur-
round the points of the set by small circles. If by making the circles suffi-
ciently small we can avoid intersecting any points, then the set is said
to be zero-dimensional. Thus, to take a trivial example, if the given set
consists of a finite number of distinct points, we could certainly surround
all these points by arbitrarily small circles which do not run through any
point of the set [Figure 7]. Hence a finite set of points is zero-dimen-
sional. Likewise the infinite set of points whose labels are 1, 1/2, 1/4. ¼ .
is zero-dMiensional [Figure 81.

We can now define one-dimensional sets in terms of zero-dimensional
sets. A set of points. whether on a line or in a plane, is one-dimensional
if it is not zero-dimensional and if arbitrarily small circles surrounding

FIG. 8

each point of the set can he found which cut the set in a zero-dimensional
set of points. Thus if we consider a straight line as the set of points whose
dimension is to be determined. then we note that any circle surrounding
a point of the line cuts the line in two points [Figure 9]. Since the two
points of intersection are a zero-dimensional set by definition, and since
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any circle surrounding any point of the line must intersect the line, the
line is one-dimensional.

To clarify the concept still further, let us apply it to the set of points
in a square. If we surround any point inside the square with a small

FIG. 9

circle, the entire circle will intersect the square [Figure 10]. If we sur-
round any point on the boundary of the square with a small circle, then
an arc of the circle will intersect the square [Figure 11]. Now a circle or
any arc of the circle is one-dimensional by the definition of one-dimen-
sional sets of points. Hence the points of the square are said to be a
two-dimensional set.

Just to test the definition let us apply it once more to a complex curve
the outline of a four-petaled rose [Figure 12]. The most complicated

portion of this curve centers on the middle point. If surround this
point with an arbitrarily small circle, the circle will cut the curve in
eight points. Since this intersection is a finite set of points, the intersec-
tion is zero-dimensional and the Mlle itself, therefore, one-dimensional.

FIG. 10

0

FIG. 11

Some of the principal ieatures of the internal organization of the
straight line are now before us. It is to be hoped that they have given
some understanding of that structure. This structure provides the an-
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FIG. 12

swers to other problems involving the straight line. Let us listen once
more to Zeno, the master of paradoxes. An arrow in flight, he says, is at
any one moment in a definite position and therefore at rest. Hence the
flying arrow is at rest wherever it is throughout its flight! With these
words Zeno struck at the very concept of motion.

We must agree with Zeno that at any instant of its flight the moving
arrow is somewhere in a definite position. And we may, if we like, even
agree that the arrow is at rest in each of these positions. How then can
the arrow pursue its smooth, continuous course? The structure of the
straight line supplies the answer. It tells us that a continuous segment
is composed of an infinite number of densely packed points. So contin-
uous motion is no more than an assemblage of densely packed positions
of rest. It is like a motion picture with an infinite number of still shots.

Our purpose in this brief survey has been to show that the seemingly
simple problem of the nature and structure of the straight line leads to
large modern developments in mathematics. These developments may
leave readers with the impression that mathematics has gone to fantastic
lengths and has distorted the original intuitive concept beyond recogni-
tion. Admittedly mathematics is a creation of the mind and its reality is
not the reality of the physical world. Yet just these seemingly unrealistic
idealizations of mathematics have proved to be the foundation and
strength of modern science, as well as of mathematics. More than that,
they arc the bridge between the world of the senses and any reality that
man may come to know.
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FOREWORD
During the early part of the nineteenth century, one of the most

prominent of European philosophers, Immanuel Kant, promulgated
rather positive views concerning the nature of space. According to Kant,
space was "a pure form of sensuous intuition:' What he meant is ex-
plained in his own words: "Time and space are two sources of knowledge
from which various a priori synthetical cognitions can be derived. Of
this, mathematics gives a splendid example in the case of our cognition of
space and its various relations. As they are both pure forms of sensuous
intuition, they render synthetic propositions a priori possible:'

Thus from Kant's point of view, mathematical "truths" or relations
are neither invented nor created; since mathematics exists a priori, they
are merely discovered (or rediscovered).

With the creation of non-Euclidean geometry about the middle of
the nineteenth century, Kant's notions of the nature of mathematics
and of space were thoroughly discredited. Henceforth the notion of
"intuition" in mathematics took on a completely different aspect. The
mathematician of today no longer regards mathematics as something
"pre-existing:' To be sure, he often uses physical models to suggest ab-
stract concepts and relations, and it is chiefly in this sense that we think of
the "intuitional basis" of modern mathematics.
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Geometry and Intuition
A classic description of how "common sense,' once accepted as the basis

of physics but now rejected, is also inadequate as a
foundation for mathematics

We have grown so accustomed to the revolutionary nature of modern
science that any theory which affronts common sense is apt to be re-
warded today as half proved by that very fact. In the language of science
and philosophy the word for common sense is intuition it relates to
that which is directly sensed or apprehended. Twentieth-century discov-
eries have dealt harshly with our intuitive beliefs about the physical
world. The one area that is commonly supposed to remain a stronghold
of intuition is mathematics. The Pythagorean theorem is still in pretty
good shape; the self-evident truths of mathematics are in the main still
true. Yet the fact is that even in mathematics intuition has been taking
a beating. Cornered by paradoxeslogical contradictionsarising from
old intuitive concepts, modern mathematicians have been forced to re-
form their thinking and to step out on the uncertain footing of radically
new premises.

Some years ago the brilliant Austrian mathematician Hans Hahn
surveyed the situation in a Vienna Circle lecture which he titled "The
Crisis in Intuition:' His analysis is still fresh and timely, and it is pub-
lished here, in part, for the first time in English. Hahn began with
Iminanuel Kant, the foremost exponent of the importance of intuition,
and showed how the foundations of KanCs ideas about knowledge "have
been shaken" by modern science. The intuitive conceptions of space
and time were jolted by Einstein's theory of relativity and by advances
in physics which proved that the location of an event in space and time
cannot be determined with unlimited precision. Hahn went on to con-
sider the demolition of Kant's ideas about mathematics, and he illus-
trated his theme with the case of geometry, where "intuition was gradu-
ally brought into disrepute and finally was completely banished:' This
section of his lecture, somewhat condensed,.follows.

Han.i Hahn

One of the outstanding events in [the banishment of intuition from
geometry} was the discovery that, in apparent contradiction to what had
previously been accepted as intuitively certain, there are curves that
possess no tangent at any point, or what amounts to the same thing
that it is possible to imagine a point moving in such a manner that at
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no instant does it have a definite velocity. The questions involved here
directly affect the foundations of the differential calculus as developed
by Newton and Leibnitz.

Newton calculated the velocity of a moving point at the instant t as
the limiting value approached by the average velocity between t and an -
instant close to it, t', as t' approaches t without limit. Leibnitz similarly
declared that the sIope of a curve at a point p is the limiting value
approached by the average slope between p and a nearby point p' as 12'

approaches p without limit.
Now one asks: Is this true for every curve? It is indeed for all the old

FIG. 1

familiar onescircles, ellipses, hyperbolas, parabolas, cycloids, etc. But
it is not true, for example. of a wave curve such as is shown here [Figure
11. In the neighborhood of the point p the curve has infinitely many
waves. The wavelength and the amplitude of the waves decrease without
limit as they approach p. If we take successive points closer and closer
to p. the average slope between p and p' (the moving point) drops from
plus I through (1 to minus 1 and then rises from minus 1 to plus 1. That
is. as p' approaches p without limit through infinitely many waves, the
average slope between p and p' keeps oscillating between the values I
and I. Thus there can be no question of a limit or of a definite slope
of the curve at the point p. In other words, the curve we arc considering
has no tangent at p.

This relatively simple illustration demonstrates that a curve does not
have to have a tangent at every point. Nevertheless it used to be thought,
intuitively, that such a deficiency could occur only at exceptional points
of a curve. It was therefore a great surprise when the great Berlin mathe-
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matician Karl Weierstr-ass announced in 1861 a curve that lacked a
precise slope or tangent at any point. Weierstrass invented the curve by
an intricate and arduous calculation, which I shall not attempt to repro-
duce. But his result can today be achieved in a much simpler way, and
this I shall attempt to explain, at least in outline.

We start with a simple figure Which consists of an ascending and a
descending line [Figure 2]. We then replace the ascending line with a
broken line in six parts. first rising to half the height of the original

FIG. 2 FIG. 3

FIG. 4

line, then dropping all the way down, then again rising to half the
height. continuing to full height, dropping back again to half height
and finally risirg once morc to full height [Figure 3]. We replace the
descending line also with a broken line of six similar parts. From this
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figure of 12 line segments we evolve, again by replacing each segment
with a broken line of six parts. a figure of 72 line segments [Figure 4].
It is easy to see that repetition of this procedure will lead to more and
more complicated figures. It can be demonstrated that the gaimetric
objects constructed accdrding to this rule approach without limit a
definite curve possessing the desired property; namely, at.no point will
it have a precise slope, and hence at no point a tangent. The character
of this curve of course entirely eludes intuition; indeed, after a few
repetitions of the segmenting process the evolving figure has grown so
intricate that intuition can scarcely follow. The fact is that only logical
analysis can pursue this strange object to its final form.

Lest it be supposed that intuition fails only in the more complex
branches of mathematics. I ptopose now to examine a failure in the
elementary branches. At the very threshold of geometry lies the concept
of the curve; everyone believes that he has an intuitively clear notion
of what a curve is. Since ancient times it has been held that this idea

FIG. 5 FIG. 6

could be expressed by the following definition: Curves are geometric
figures generated by the motion of a point. But attend! In the year 1890
the Italian mathematician Giuseppe Peano (who is also renowned for
his investigations in logic) proved that the geometric figures that can
he generated by a moving point also include entire plane Aurfacrs. For
instance, it is possible to imagine a point moving in such a way that in
a finite time it will pass through all thc points of a spine and yet no
one wmild consider the entire area of a square as simply a curve. With
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the aid of a few diagrams I shall attempt to give at least a general idea
of how this space-filling motion is generated.

Divide a square into four small squares of equal size and join the
center points of these squares by a continuous curve composed of
straight-line segments [Figure 5]. Now imagine a point moving at uni-
form velocity so that it will traverse the continuous curve made of these
line segments in a certain unit of time. Next divide each of the four
squares again into four equal squares so that there are 16 squares, and
connect their center points fFigure 61 Imagine the point moving so that
in the same time as before it will traverse this second curve at uniform
velocity. itepeat the procedure, each time imagining the point to move
so that in the same unit of time it will traverse the new system of lines
at a uniform velocity. Figure 7 shows one of the later stages, when the
original square has been divided into 4,096 small squares. It is now
possible to give a rigorous proof that the successive motions considered
here approach without limit a curve that takes the moving point through
all the points of the large square in the given time. This motion cannot
possibly be grasped by intuition: it can only be understood by logical
analysis.

While a geometric object such as a square, which no one regards as
a curve, can be generated by the motion of a point, other objects which
one would not hesitate to classify as curves cannot be so generated.
Observe, for instance, the wave curve shown here [Figure 8] . In the
neighborhood of the line segment ub the curve consists of infinitely
many waves whose lengths decrease without limit but whose amplitudes
do not decrease. It is not difficult to prove that this figure, in spite of its
linear character, cannot be generated by the motion of a point, for no

FIG. 7
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motion of a point is conceivable that would carry it through all the
points of this wave curve in a finite time.

Two important questions now suggest themselves. (1) Since the time-
honored definition of a curve fails to cover the fundamental concept,
what serviceablt definition can be substituted, for it? (2) Since .the class
of geometric objects that can be produced by the motion of a point does
not coincide with the class of all curves, how shall the former class be
defined? Today both questions are satisfactorily answered; I shall defer
for a moment the answer to the first question and speak briefly about the
second. This was solved with the aid of a new geometric concept "con-
nectivity in the small:' Consider a line, a circle or a square. In each of
these cases, we can move from one point on the figure to another very
close to it along a path which does not leave the confines of the figure,
and we remain always in close proximity to both points. This is the
property called "connectivity in the small:' Now the wave curve we have
just considered does not have this property. Take for example the neigh-
boring points p and q [Figure 9]. In order to move from p to q without
leaving the curve it is necessary to traverse the infinitely many waves
lying between them. The points on this path are not all in close proxim-
:ty to p and q, for the waves all have the same amplitude.

It is important to realize that "connectivity in the small" is the basic
characteristic of figures that can be generated by the motion of a point.

FIG. 9

A line, a circle and a square can be generated by the motion of a point
because they are connected in the small; the wave figure shown cannot
be generated by the motion of a point because it is not connected in the
small.

We can convince ourselves of the undependability of intuition, even
as regards such elementary geometrical questions, with a second example.
Think of a map of three adjoining countries [Figure 9]. There are certain
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points at which all three countries come togetherso-called "three-
country corners" (points a and b). Intuition seems to indicate that such
corners can occur only at isolated points, and that at the great majority
of boundary points on the map only two countries will be in contact
Yet the Dutch mathematician L. E. J. Brouwer showed in 1910 how a
map can be divided into three countries in such a way that all three
countries will touch one another at every boundary point!

Start with a map of three countriesone hatched (A), one dotted (B)

a

FIG. 10

a

FIG. 12

a

FIG. 11

a

FIG. 13

and one solid (C) and an adjoining unoccupied area [Figure 10].
Country A. seeking to bring this land into its sphere of influence, decides
to push out a corridor which approaches within one mile of every point
of the unoccupied territory but to avoid trouble does not impinge
upon either of the two other countries [Figure 11]. After this has been
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done, country B decides that it must do the same and proceeds to drive
into the remaining unoccupied territory a corridor that comes within
one-half mile of all the unoccupied points but does not touch either of
the other two countries [Figure 12]. Thereupon country C decides that
it cannot lag behind, and it also extends a corridor into the territory as
yet unoccupied, which comes to within a third of a mile of every point
of this territory but does not touch the other countries [Figure I n.
Country A now proceech to push a second corridor into the remaining
unoccupied territory, which comes within a quarter of a mile of all
points of this teritory but does not touch the other two countries. The
process continues: Country B extends a corridor that comes within a
fifth of a mile of every unoccupied point; country C. one that comes
within a sixth of a mile of every unoccupied point: country A starts over
again, and so on and on. And since we are giving imagination free rein,
let us assume further that country A required a year for the construction
of its first corridor, country B, the following half-year for its first corridor,
country C. the next quarter year for its first corridor; country A, the next
eighth of a year for its second, and so on, each succeeding extension
being completed in half the time of its predecessor. It can be seen that
after two years none of the originally unoccupied territory win remain
unclaimed; moreover the entire area will then be divided among the
three countries in such a fashion that all three countries will meet at
every boundary point. Intuition cannot comprehend this pattern, but
logical analysis requires us to accept it.

Because intuition turned out to be deceptive in so many instances,
and because propositions that had been accounted true by intuition were
repeatedly proved falsf: by logic, mathematicians became more and more
skeptical of the valicUty of intuition. The conviction grew that it was
unsafe to accept any mathematical proposition, much less to base any
mathematical discipline on intuitive convictions. Thus a demand arose
for the expulsion of intuition from mathematical reasoning and for the
complete formalization of mathematics. That is to say, every new mathe-
matical concept was to be introduced through a purely logical definition;
every mathematical proof was to be carried through by st ictly logical
means. The pioneers of this program (to mention only the most famous)
were Augustin Cauchy (1789-1857), Bernhard Bolzano (1781-1848),
Karl Weierstrass (1815-1897). Georg Cantor (1845-1918) and Julius
Wilhelm Richard Dedekind (1831-1916).

The task of completely formalizing or logicizing mathematics was
arduous and difficult; it meant nothing less than a root-and-branch re-
form. Propositions that had been accepted as intuitively evident had to
be painstakingly proved. As the prototype of an a priori synthetic judg-
ment based on pure intuition Kant expressly cited the proposition that
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space is three-dimensional. But by present-day standards even this state-
ment calls for searching logical analysis. First it is necessary to define
purely logically what is meant by the "dimensionality" of a geometric
figure. and then it must be proved logically that the space of ordinary
geometry which is also the space of Newtonian physicsas embraced
in this definition is in fact three-dimensional. This proof was not achieved
until 1922. and then simultaneously by the Vienna mathematician
K. Menger and the Russian mathematician Pavel Uryson (who later

FIG, 14

Flo. 16

succumbed to a tragic accident at the height of his creative powers). I
wish to explain briefly how the dimensionality of a figure is defined.

A geometric figure is called a "point set: It is said to be null-dimen-
sional if for each of its points there exists an arbitrarily small neighbor-
hood whose boundary contains no point of the set. For example, every
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set consisting of a finite number of points is null-dimerisional, but there
are also many complicated null-dimensional points which consist of
infinitely many points [Figure H]. A point set that is not null-dimen-
sional is called one-dimensional if for each of its points there is an
arbitrarily small neighborhood whose boundary has only a null-dimen-
sional set in common with the point set [Figure /5]. Every straight line,
every figure composed of a finite number of straight lines, every circle,
every ellipse in short, all geometrical constructs that we ordinarily
designate as curvesare one.dimensional in this sense. A point set that
is neither null-dimensional nor one-dimensional is called two-dimen-
sional if for each of its points there is an arbitrarily small neighborhood
whose boundary has at the most a one-dimensional set in common with
thc point set. Every plant. every polygonic or circular area, every
spherical surface in short, every geometric construct ordinarily classi-
fied as a surface is two-dimensional in this sense. A point set that is
neither null-dimensional. one-dMwnsional nor two-dimensional is called
three-dimensional if for each of its points there is an arbitrarily small
neighborhood whose boundary has at most a two dimensional set in
common with the point set. It can be provednot at all simply, however

that the space of ordinary geometry is a three-dimensional point set.
This theory provides what we have been seekinga fully satisfactory

definition of the concept of a curve. The essential characteristic of a
curve turns out to be its mw-dimensionality. But beyond that the theory
also makes possible an unusually precise and subtle analysis of the struc-
ture of curves, about which I should like to comment briefly.

A point on a curve is called an end point if there arc arbitrarily small
neighborhoods surrounding it. each of whose boundaries has only a
single point in common with the curve [points a and b in figure 16j.
A point on the curve that is not an end point is called an ordinary point
if it has arbitrarily small neighborhoods each of whose boundaries has
exactly two points in common with the curve [point c in Figure 16]. A
point on a curve is called a branch point if the boundary of any of its
arbitrarily small neighborhoods has more than two points in common
with the curve [point d in Figure 16]. Intuition seems to indicate that
it is impossible for a curve to be made up of nothing but end points or
branch points. As far as cnd points are concerned, this intuitive convic-
tion has been confirmed by logical analysis. but as regards branch points
it has been refuted. The Polish mathematician W Sierpinski proved in
1915 that there are curves all of whose points are branch points. Let us
attempt to visualize how this comes about.

Suppose that an equilateral triangle has been inscribed within another
equilateral triangle and the interior of the inscribed triangle erased
[Figure 17]. In each of the three remaining triangles [the unhatched
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areas] inscribe an equilateral triangle anu again erase its interior; there
are now nine equilateral triangles together with their sides [Figure 18].
Imagine this process continued indefinitely. (Figure 19 shows the fifth
step, where 243 triangles remain.) The points of the original equilateral

FIG. 17 FIG. 18

triangle that survive the infinitely numerous erasures can be shown to
form a curve all of whose points, with the exception of the vertex points
a. b and c of the original triangle. are branch points. From this it is easy
to obtain a curve with all its points branch points; for instance, by
distorting the entire figure so that the three vertices of the original
triangle are brought together in a single point.

But enough of examples let us now summarize what has been said.
Repeatedly we have found that in geometric questions, even in very
simple and elementary ones, intuition is a wholly unreliable guide. And
it is of course impossible to adopt this discredited aid as the basis of a
mathematical discipline. The way is then open for other logical con-
structs in the form of spaces differing from the space of ordinary geom-
etry; spaces, for instance, in which the so-called Euclidean parallel postu-
late is replaced by a contrary postulate (non-Euclidean spaces), spaces
whose dim.msionality is greater than three, non-Archimedean spaces (in
which the are lengths that are greater than any multiple of a given
length).

What, then, are we to say to the often-heard objection that the multi-
dimensional, non-Euclidean, non-Archimedean geometries, though con-
sistent as logical constructs, are useless in arranging our experience
because they do not satisfy intuition? My first comment is that ordinary
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geometry itself is by no means a supreme example of the intuitive process.
The fact is that every geometrythree-dimensional as well as multi-
dimensional, Euclidean as well as non-Euclidean, Archimedean as well
as non-Archimedean is a logical construct. For several centuries, al-
most up to the present day, ordinary geometry admirably served the
purpose of ordering our experience; thus we grew used to operating
with it. This explains why we regard it as intuitive, and every departure
from it contrary to intuition intuitively impossible. But as we have
seen, such "intuitional impossibilities" occur even in oriirarv geometry.
They appear as soon as we reflect upon objects that w ot thought
about before.

Modern physics now makes it appear appropriate to avail ourselves
of the logical constructs of multidimensional and non-Euclidean geo-
metries for the ordering of our experience. (Although we have as yet no
indication that the inclusion of non-Archimedean geometry might prove

FIG. 19

useful, this possibility is by no means excluded.) But, because these ad-
vances in physics are very recent, we are not yet accustomed to the
manipulation of these logical constructs; hence they are still considered
an affront to intuition.

The same reaction occurred when the theory that the earth is a sphere
was advanced. The hypothesis was widely rejected on the grounds that
the existence of the antipodes was contrary to intuition: however, we
have got used to i he conception and today it no longer occurs to anyone
to pronounce it impossible because it conflicts with intuition.

Physical concepts are also logical constructs, and here too we can see
clearly how concepts whose application is familiar to us acquire an intui-

40



Live status which is denied to those whose application is unfamiliar. The
concept "weight" is so much a part of common experience that almost
everyone regards it as intuitive. The concept "moment of inertia:' how-
ever, does not enter into most people's activities and is therefore not
regarded by them as intuitive; yet among many experimental physicists
and engineers, who constantly work with it, moment of inertia possesses
an intuitive status equal to that generally accorded the concept of weight.
Similarly the concept -potential difference" is intuitive for the electrical
technician, but not for most people.

If the use of multidimensional and non-Euclidean geometries for the
ordering of our experience continues to prove itself so that we become
more and more accustomed to dealing with these logical constructs; if
they penetrate into the curriculum of the schools; if we, so to speak,
learn them at our mother's knee as we now learn three-dimensional
Euclidean geometry then it will no longer occur to anyone to say that
these geometrics are contrary to intuition. They will be considered as
deserving of intuitive status as three-dimensional Euclidean geometry
is today. For it is not true, as Kant urged, that intuition is a pure a priori
means of knowledge. Rather it is force of habit rooted in psychological
inertia.
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FOREWORD
It is not easy to express in simple language the enormously significant

contributions of Riemann to both pure mathematics as well as to mathe-
matical physics. To say that Riemann, in the middle of the nineteenth
century, literally revolutionized geometrical thought is scarcely an
exaggeration.

Manifesting an intellectual courage of the highest order, Riemann
convinced the mathematical world that no particular geometry nor any
particular space was to be regarded as the necessary form of human per-
ception. From that moment on the concept of "ab§olute space" was
abandoned and the era of relativity was upon us.
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The Curvature of Space

Just 100 years ago the young Bernhard Riemann gave his famed paper
on the foundations of geometry. He discussed space of four or more
dimensions, and paved the way for the General Theory of Relativity

P LeCorbeiller

In the spring of 1854 a young German mathematician named Bernhard
Riemann was greatly worried about his future and about a test he faced
immediately. He was already 28, and still not earning he was living
meagerly on a few thalers sent each month by his father, a Protestant
minister in a small Hanover town. He wrote modestly to his father and
brother that the most famous university professors, in Berlin and in
Göttingen, had unaccountably been extraordinarily kind to him. He
had his doctor's degree; now, to obtain an appointment as a lecturer
(without stipend), he had to give a satisfactory lecture before the whole
Faculty of Philosophy at Göttingen. He had offered three subjects. "The
two first ones I had well prepared:' Bernhard wrote his brother, "but
Gauss chose the third one, and now I'm in trouble'

Karl Friedrich Gauss was the dean of. German mathematicians and
the glory of his university. In Bernhard's picture of Heaven, Gauss's
professorial armchair was not very far from the Lord's throne. (This is
still the general view in Göttingen today.) The subject Gauss had chosen
for young Riemann's lecture was "The Hypotheses That Are the Foun-
dations of Geometry:' Gauss had published nothing but a few cryptic
remarks on this topic, but he selected it in preference to the two others
proposed by Riemann because he was curious to find out what the young
man would have to say on such a deep and novel subject a subject to
which Gauss himself had given much thought and had already made a
great, though as yet not widely appreciated, contribution.

The day of Riemann's public lecture was Saturday, June 10, 1854.
Most of his auditors were classicists, historians, philosophers anyway,
not mathematicians. Riemann had decided that he would discourse about
the curvature of n-dimensional spaces without writing any equations.
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TRIANGLES drawn on a plane and on a sphere obey somewhat different rules. On
a plane the sum of the angles of a triangle always is equal to 180 degrees. The inter-
section of three great circles on the surface of a sphere forms three angles adding
up to 270 degrees.
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Was that a courteous gesture on his part, or a mildly Machiavellian
scheme? We shall never know.. What is sure is that without equations
Gauss understood him very well, for walking home after the lecture he
told his colleague Wilhelm Weber, with unwonted warmth, of his utmost
admiration for the ideas presented by Riemann.

Gauss's enthusiasm was justified. The young man had reached into
realms of thought so new that few scientists then could follow him. But
his abstract ideas were to make contact with experimental reality half a
century later through the work of Albert Einstein, who saw that Rie-
mann's speculations were directly applicable to the problem of the inter-
action between light and gravitation, and made them the basis of his
Generalized Relativity Theory, which today controls our view of the
universe.

Let us then go back 100 years and acquaint ourselves with the thoughts
which Riemann made public on that June day of 1854. Before reaching
Riemann's ideas we first have to cover some rather elementary back-
ground.

Everybody is familiar with the elements of plane geometry. A straight
line is the shortest way between two points; parallel lines never meet;
the sum of the three angles of a triangle equals two right angles, or 180
degrees, and so on and so forth. Also familiar is the geometry of figures
drawn on the surface of a sphere, which obey somewhat different rules.
The shortest route between two points on a sphere is called a "great
circle"; this is the curve made by a cut through the points and the center
of the sphere, splitting the sphere into equal halves. Two great circles
always meet in two points; for instance, any two meridians of the earth
always meet at the North and South poles. When segments of three great
circles (for instance, one quarter of the earth's equator and the northern
halves of two meridians) intersect to form a "spherical triangle the
three angles of 90 degrees add up to 270 degrees, or three right angles.
The difference between this triangle and one in a plane derives from
the fact that the sides of the former are drawn on a curved surface instead
of on a flat one.

Now how do we know that the surface of a table is flat and that ef the
earth is spherical? All early civilizations imagined the earth as a flat disk,
with mountains heaped upon it like food on the king's table. Not being
able to go to the moon to look at the earth, men could not see its true
shape. Flow, then, did Greek astronomers come to the conclusion that
the earth was round? By observing that the North Star was higher in the
sky in Greece than in Egypt. Thus it is evident that we can recognize
that a sphere is round either by observing it from a distance or, if we
stand on it, by observing objects far away.

Man also could, and did. discover that the earth was round in two
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AN EGG has a curved surface which looks as if the surface of the large end be-
longed to one sphere and the surface of the small end to another. The middle has
a different curvature.

HALF AN EGG, laid on a table and cut into vertical cross sections, will yield sec-
tions with concave curves downward. These curves look like portions of circles of
different radii.
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entirely different ways. One way was his circumnavigation of the earth.
He found that while the surface of the earth had no "edge,' no boun-
daries, its area was nevertheless limited. This is a most remarkable fact:
the surface of the earth is boundless and yet it is finite. Obviously that
situation rules out the possibility that the earth could be a plane. The
surface of a plane is boundless and also infinite. (In common speech we
consider these two words strictly synonymous one of the many instances
which prove that the sphericity of the world has not yet really taken
hold of our consciousness.)

Thus mankind would have discovered that the earth is round even
if it were constantly covered with a canopy of thick clouds. But suppose
that he had somehow been prevented from exploring the whole planet.
There is still another way in which he could have found out he was living
on a globe, and that is by using the spherical geometry we have been
talking about. If we look at a small triangle on the earth's surface, say
one with sides about 30 feet long, it is indistinguishable from a flat tri-
angle; the sum of its three angles exceeds 180 degrees by an amount so
small that it cannot be measured. As we consider larger and larger
triangles on the earth's spherical surface, however, their curvature will
become more and more significant, and it will show up in the excess of
the sym of their angles.over 180 degrees. Thus by developing more and
more precise methods of surveying and of making maps men eventually
could prove the sphericity of the earth, and from their measurements
they could find out the globe's radius. We shall return presently to this
matter.

There are many types of surfaces besides those of a plane and a sphere.
Consider an egg. It has a large end and a small end. A round piece of
shell from the large end looks as if it were cut from a sphere; a round
piece from the small end looks as if it belonged to a sphere with a smaller
radius than thc first. The piece from the small end looks more curved
than that from the large end. Geometers define the curvature of a sphere
as the inverse of its radius squared. So the smaller the radius, the larger
the curvature, and vire versa.

If we were given a piece of shell from the middle zone of the egg.
could we define its curvature? That is a little difficult, because such a
piece cannot be identified with a portion of a simple sphere. The problem
has been solved as follows. Suppose we lay the piece, which has the shape
of a more or less elongated oval. on a table. It forms a rather fiat dome.
Any vertical cross section of that dome will be a curve concave downward.
Every vertical cross section will look approximately like a portion of a
circle, but not all will have the same radius. The section through the
narrowest part of the base will have the smallest radius; the section
through the elongated part. the largest. Let us call the first radius R,
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and the second R. Geometers then take a sort of average, and define the
curvature of that small portion of eggshell as the inverse of the product
111R. You can see that if the eggshell were a perfect sphere, we would be
brought back to the previous definition.

On the basis of these definitions one finds that the curvature of a small
piece of an eggshell changes as we travel on the surface of the egg. It
would make no sense to talk about the curvature of the whole egg; we
can only talk about the curvature of a small piece.

Consider next the surface of a saddle. A crosswise vertical section cut
through a saddle forms a curve which is concave downward, whereas a
lengthwise vertical cut forms a curve concave upward. This makes even
a small piece of the surface of a saddle something radically different from
a small piece of an eggshell. Geometers say that the eggshell has every-
where positive curvature, and the saddle has everywhere negative curva-
ture. The curvature of a small portion of a saddle-shaped surface can
again be defined as the inverse of the product R,R,, but this time it must
be given a negative sign.

And here is still something else. Consider a doughnut. If you compare
the inner half of the surface (facing the center of the hole in the dough-
nut) with the outer half, you will recognize that any small portion of the
outer half has positive curvature, while any small portion of the inner
half has negative curvature, as in the case of a saddle. Thus we must not
think that the curvature need be positive or negative all over a given
surface; as we travel from point to point on a surface the curvature not
only can become greater or smaller, it can also change its sign.

Remember that we are engaged in taking a bird's-eye view of what was
known about the curvature of surfaces before Riemann's time. What we
have seen so far had been recognized in the 18th century by Leonard
Euler, a Swiss mathematician of considerable imagination and output,
and had been developed by a group of French geometers at the newly
founded Ecole Polytechnique. Then in 1827 Gauss, Riemann's senior
examiner, added much generality and precision to the topic. He pub-
lished a memoir on curved surfaces which is so jewel-perfect that one can
still use it today in a college course.

Gauss started from the fact that geographers specify the location of a
city on the globe by giving its longitude and latitude. They draw merid-
ians of longitude (such as the one which unites all the points on the globe
85 degrees west of the north-and-south great circle through Greenwich)
and also parallels of latitude. We may speak of the "family" of meridians
and the "family" of parallels. In order to specify the location of a point
on any mathematically given surface, Gauss imagined that we draw on
that surface two families of curves, called p-curves and q-curves. We take
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suitable precautions so that any point on the surface will be pinpointed
if we specify its p-coordinate and its q-coordinate.

Gauss's great insight was this. On an absolutely flat surface, if wc travel
three miles in one direction, then turn left and travel four miles in the
perpendicular direction, we know from Pythagoras' theorem that we are
at a point five miles from home. But Gauss reasoned that on a curved
surface, whether egg, or saddle or what have you, the distance will be
different. To begin with, the p-curves and q-curves will not intersect
everywhere at right angles, and this adds a third term to the sum of the
two squares in the Pythagorean equation a2 b2--_-=c2. Moreover, if we
visualize the two families of curves as a kind of fish net drawn tight all
over the surface, the angles and sides of the small meshes will change
slowly as we travel from one region of the surface to another where the
curvature is different.

Gauss expressed his reasoning in a famous mathematical equation.
One p-curve and one q-curve pass through a given point M on a curved
surface. The "quasi longitude" p and the "quasi latitude" q of point M
have specific numerical values. We wish to move from point M to a
neighboring point P on the surface. We first increase the value of p by
a small quantity, letting q remain the same. Gauss used dp as the symbol
for an arbitrarily small increase of p. We thus get to a point N, of longi-
tude p 4- dp and latitude q. We next increase the value of q by a small
quantity, dq. letting p dp remain the same. We thus reach a point P.
of longitude p dp and latitude q dq. We wish to know the distance
from point M to point P Since this distance is arbitrarily small, Gauss
used for it the symbol ds In Gauss's notation, the square of the distance
(Ls will be expressed by the sum of three terms:

ds2 = E dp2 dp dq G dq2

This equation is one of the high points in the whole of mathematics
and physics a mountain-top where we should exclaim in awe, like Faust
suddenly perceiving the symbol of the macrocosm: "Was he a god, who-
ever wrote these signs?" It needed only two steps, one taken by Riemann
and thc other by Einstein. to carry us from Gauss's equation into the land
of general relativity.

At any point M on our arbitrary surface, this equation is not different
from a Euclidean theorem about the square of the third side. ds. of any
triangle, thc first two being dp, dq. That is because in thc immediate
neighborhood of a point the surface is very nearly a plane. But here is
the novelty: Gauss introduced the functions E, F and 6, whose numerical
values change continuously as we move from point to point on the sur-
face. Gauss saw that each of the quantit ies E, F, G was a function of the
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two arbitrary quantities p and q, the quasi longitude and the quasi lati-
tude of point M. On a plane we can draw p-lines and q-lines dividing the
plane into small equal squares, as on a chessboard; we have then de =
dp2 dce, so that E is constantly equal to I, F to zero and G to 1 all over
the plane. But on a curved surface E, F and G vary in a way which ex-
presses, in an abstract but precise manner, just those variations in the
curvature of a surface that make every point different from every other.

Gauss now proved this remarkable theorem: that the curvature of the
surface at any point can be found as soon as one knows the values of E, F
and G at the point, and how they vary in its immediate neighborhood.
Why is this theorem so remarkable? Because if we return te our fictional
humanity living on some beclouded globe, not a spherical one this time
but of arbitrary shape, the surveyors of any particular nation on that
globe, knowing the theorem, could obtain all the information about E,
F and G without seeing the stars and without going to the moon. Thus
from measurements taken on the surface itself they would be able to
calculate the curvature of their globe at various points and to find out
whether the surface of their country was curved like a portion of an egg,
saddle or doughnut, as the case might be.

Now of all the ridiculous and useless puzzles scientists like to solve,
this one, you may think, surely takes the prize. Why should mathemati-
cians find it important to describe the behavior of imaginary people in
a nonexistent world? For a very good reason: These people are ourselves.
Only it takes some little explanation to make you realize I have been
talking about you and me.

Let us imagine small bits of paper of various irregular shapes on a
large, smooth sphere. These bits . ,1 raper are alive and moving: they are
the people of that world, only their bodies are not volumes enclosed by
surfaces but surfaces enclosed by curves. These people, having abso-
lutely flat bodies without thickness, can form no conception of the space
above or below them. They are themselves only portions of surfaces, two-
dimensional beings. Their senses are adapted to give them information
about the surroundings in their two-dimensional world. But they have
no experience whatsoever of anything outside that world; so they cannot
conceive of a third dimension.

However, they are intelligent; they have discovered mathematics and
physics. Their geometry consists of two parts line geometry and plane
geometry. In physics they illustrate problems in one variable by dia-
grams on a line; problems in two variables, by surface diagrams. Prob-
lems in three, four or more variables they solve by algebra: "It's too bad:'
they say, "that for these we can't have the help of diagrams!'

In the first half of the 19th century (their 19th century) an idea dawned
upon several of them. "We cannot: they said, "imagine a third dimen-
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sion, but we do handle physical problems in three variables, x, y, z. Why
couldn't we ta/k about a space of three dimensions? Even if we cannot
visualize it, it might be helpful to be able to talk about points, lines and
areas located in that space. Maybe something might come of it; anyway,
there's no harm in trying:' And so they tried.

We need not carry this fable any farther; its meaning is clear enough.
We are just like these people, only our bodies have three dimensions and
are moving about in a three-dimensional world. Neither you nor I can
visualize a fourth dimension; yet we handle problems about a particle
moving in space, and this is a problem in four variables: x, y, z for space
and t for time. We also handle problems about electromagnetic fields.
Well, the electric field vector Eat any point (x, y, z) has three projections,
E E E and it changes in space and time; that makes seven variables.
Add three more for its twin brother, the magnetic field B, and we have
10. It looks as if thc mathematical physicist could well use spaces of four
or 1 0 or any number of dimensions.

Riemann in his dissertation assumed at the outset a space of an arbi-
trary number of dimensions. Now a lesser geometer would have found
it very straightforward to define the distance of two neighboring points
in that space. Don't we know from Pythagoras' theorem that in a plane
thc square of that distance, ds2, is equal to the sum of two squares: ds2 =

dy2? Well then obviously in an n-dimensional space ds must be
the sum of n squares. the sum of all the terms similar to dx= which we can
find. A very c-onvenient shorthand for the expression "the sum of all the
terms similar to" is the Greek capital 1. Thus a simple-minded geometer
would have written ds2 dx2. But Riemann saw farther than that. He
had given much thought to the 1827 memoir of his master Gauss. He
reasoned that. if we assumed that ds2 = dx2, we were beaten at the out-
set. For Pythagoras' theorem is valid only in a plane. divided into equal
little squares like a chessboard. Actually what we need to generalize is
Gauss's equation, which works for any curved surface whatsoever, includ-
ing a plane as a very special case. Gauss had added two things to Py-
thagoras' formula: (1) to the squares of dp and elq he had added the
product dp dq of these two quantities; (2) he had multiplied each of
these three terms by a coefficient of its own, and assumed that these
coefficients E, F, G varied fnnu point to i)oint over the surface.

Let us do the same thing, then. for a "supersurface" of three ditnen-
sicms, whatever that may be. We shall stretch over this supersurface three
families of surfaces p, q, r or. as they arc more conveniently designated.
x x,, x The square of the distance between two neighboring points,
ds', should be built not only from the squares of dx,. dx,. dx but also
from their pnxiucts two by two, and there arc three such products:
dx,dx dx.,dx, and dx,dx,. This makes a total of six terms, and we must



give them six coefficients. Let us represent these coefficients by the letter
g, with suitable subscripts. We must then write: ds2 g11dx,2 g.dx22
gdx*,2 2g2dx2dxz 2g11dx4x1 2gdx1dxz. (The factor 2 is not in-
dispensable, but it is esthetically satisfying to the algebraist, and Gauss
had taken a fit when a young Berlin professor, Dirichlet, had committed
the faux pas of writig a memoir which dispensed with the factor 2.)
This, then, is the correct form of the de for a supersurface of three dimen-
sions, and the six coefficients will in general vary from point to point
over the supersurface.

Riemannn, as we have said, assumed at the outset that he had n vari-
ables to deal with, not a specific number such as three or four. He needed
a name for the kind of geometrical objects he was thinking about. He
noticed two things. First, a particle is free (in theory) to move smoothly
and continuously from one point of a line or curve to another; it may

A SADDLE cut into lengthwise cross sections forms curves upward, while crosswise
sections curve downward with shorter radii. A saddle is destribed as having neg-
ative curvature.
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also move vintinuously from one point to another on a surface or in
space. Second, while studying plane geometry we think of nothing but
figures drawn on a plane; that plane is for the time being our whole
"universe of discourse," as logicians say. Yet the next year, as we study
solid geometry, we imagine planes of any orientation in space. Any one
of these planes might well be the plane of plane geometry which was last
year's universe of discourse. It makes no difference in the geometry of
a plane whether this plane exists all by itself or whether it is "embedded:'
as we now say, in three-dimensional space.

Putting these remarks together, Riemann coined the name "contin-
uum" for any geometrical object, of any number of dimensions, upon
which a point can continuously roam about. A straight ,ine, for instance,
is a continuum in one dimension and it makes no difference to the
geometry of points and segments on that line whether this one-dimen-
sional continuum exists all by itself or is embedded in a plane, in three-
dimensional space or for that matter in a space of any number of di-
mensions. "The surface of a sphere or of a saddle is, as we have seen, a
two-dimensional continuum; again it makes no difference whether we
consider it by itself or embedded in a space of any number of dimensions.

Now our space is a three-dimensional continuum. And we are bound
to add that geometry in our space will be the same whether we consider
that space by itself or assume it is embedded in a space of four, five or
any number of dimensions. We cannot visualize what this means. just
the same, we might follow up this trail and see where logic leads us.

Such must have been young Riemann's thoughts about the year 1850.
We must now try to say in a few words how far he progressed from there,
and what, mainly, his dissertation of 1854 contained.

At a first reading, the outstanding result of Riemann's efforts seems

A DOUCHNI MS SURFACE shows positive curvatute in its Outer half. while the
inner half has negative curvature (blac.O.

55



to be that he succeeded in defining the curvature of a continuum of
more than two dimensions. A two-dimensional continuum is a surface,
and we have seen that its curvature is defined, for a small region sur-
rounding any point of the surface, by a single number positive on an
egg-shaped surface, negative on a saddle-shaped surface. If the curvature
is zero at every point, the surface is a plane, and vice versa. Riemann
showed that the concept of curvature can be generalized fur the case of
a continuum of n dimensions. Only it will not be a single number any

LOCATION of a point on any mathematically given surface may be specified by
giving one coordinate from the family of p-curves and one from the intersecting
family of q-curves. On any surface but a sphere these curves will not intersect at
right angles. 4r 0,4.2

47

-0
DISTANCE from one point P to a point Al on a surface of any curvature cannot
be determined by the Pythagorean rule. Gauss defined it as a function of the inter-
secting coordinates locating points and curvatr. ^ varying on the surface from point
to point.
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more; a set of three numbers will be needed to define the curvature of
a continuum of three dimensions, a set of six numbers for one of four
dimensions, and so forth. Riemann only stated these results and made
them seem mathematically plausible; their proof and elaboration would
have filled a long memoir or occupied several weeks of lectures.

These considerations seem purely abstract a completely vacuous
game of mathematics running wild. However, Riemann's main object
in his dissertation was to convince us that he was talking not about
abtsract mathematical concepts but about a question of physics which
could be settled by the experimental method.

Let us return to those, perfectly fiat beings that live on a huge surface.
Gauss's "remarkable theorem" proves that the two-dimensional inhabi-
tants of this two-dimensional universe, provided they understood enough
mathematics, could find the curvature of any small region of their uni-
verse. How could these people conceive of a curved surface, if they could
not visualize a space of three dimensions? The answer is that such is
precisely the power of mathematics. These people would be familiar
with the concept of a curved road, contrasting with a "straight" road
which would be the shortest route between two points. If then some Rie-
mann among them had generalized this notion, in a purely algebraic
way, into a theory of thc curvature of a continuum of n dimensions.
their surveyors would be able to calculate from a formula given by
Riemann a certain number whidi, they would find, would change
slightly from country to country. Thus they would have measured the
curvature of theii two-dimensional universe without being able in any
way to visualize what that could he.

Such, of course, is exactly our situation regarding the curvature of
our own universe, and we must return to Riemann's work to form some
idea of how he came to define it.

Riemann suggested that if all the numbers which defined the curva-
ture of an n-dimensional space were zero, this space should be called
flat, for that is what we call a surface whose curvature is zero. Now if
we divide a three-dimensional space into equal little cubes, as a chess-
board is divided into equal little squares, then ds is simply the sum dx2

dy: -+ dz.', with dx, dy, dz represent ing the three sides of each little
cube. That space is a "flat" space, just as a plane is a flat surface. In other
words, what our intuition tells us is that space is flat in the sense given
to that word by Riemann.

Is it really so? That the small portion of space in our neighborhood
should appear flat is only to be expected. It may well be that space is
actually flat, not only in our vicinity but away into the realm of the
farthest nebulae. On the other hand, it is equally possible that space is
ever so slightly curved. How could we ever find out? Riemann's answer
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was: from experience. That is the revolutionary message which, very
quietly but very firmly, he brought to the scientific world.

Euclid and Kant had unconsciously accepted the intuitive notion of
space as flat. Riemann declared that this proposition should not be
asserted without proof, as self-evident; it was only a hypothesis, subject
to test by experiment. To start with we could make three hypotheses
about our space: that it had constant positive curvature, or constant neg-
ative curvature or no curvature at all (i.e., that it was flat, or Euclidean, as
we now say). Which of these hypotheses was correct was for astronomers
and physicists to find out. Such was the meaning of Riemann's cryptic
title, "On the Hypotheses That Are the Foundations of Geometry:' which
had, how very rightly, aroused the curiosity of Gauss.

There are many other important things in this dissertation of Rie-
mann's, such as a very clear-sighted appreciation of the possibility that
we may have to adopt eventually a quantum theory of spacesomething
our physicists are just now rather gingerly trying out. But the point we
have presented here the appeal to experiment in order to find out a
possible curvature of space is, we believe, the most important one.

Riemann wisely made no attempt to suggest what specific experiments
should be made. Looking back from the vantage point of our post-
Einsteinian knowledge, we realize they were very difficult to discover.
One might have expected them to lie in the domain of classical astron-
omy, of measurement of angles between stars, but that doesn't cut deep
enough. Einstein showed that gravitation had a great deal to do with the
matter and that Riemann's provisional hypothesis of a space of constant
curvature had to be abandoned in favor of local variations (e.g., the
curvature in the neighborhood of the sun or of Sirius was greater than
in empty interstellar space). He also showed that time had to be brought
in; in other words, a four-dimensional space-time was what had to be
investigated experimentally. And thus it came about that in the three
experimental checks on Einstein's theory obtained in 1920, space, time
and gravitation were seen to be indissolubly mixed.

Riemann's contention that the geometry of the universe was just a
chapter of physics, to be advanced like any other by the close cooperation
of theory and experiment, was thereby fully justified. So also was Rie-
mann's faith in his master, Gauss. The more we gaze upon Riemann's
and Einstein's truly gigantic pyramids of thought, the more we admire
how much was invisibly contained in the short, unassuming formula
written by Gauss in 1827.
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